Search results for "High repetition rate"

showing 2 items of 2 documents

New dynamics in doped fiber laser cavity : self organization and scale laws

2017

Non-linear effects, which depend essentially on the intensity of the electric field of the wave and the guide, are essential for the generation of pulse regimes in doped fiber lasers. The Kerr effect, which occurs regardless of the propagation and pumping energy, will generate the phenomenon of phase auto modulation (SPM), which will result in a spectral expansion. The SPM can also be seen in the interaction between the two waves that propagate along the slow and fast axes of the guide (XPM). In a passive uniform guide, this self-phase modulation in combination with the chromatic dispersion of the guide can lead to the soliton pulse, but this framework must be largely overcome to address pu…

Laser à fibre[PHYS.PHYS]Physics [physics]/Physics [physics][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Blocage de modesInterféromètre de Mac-ZehnderFiber laserImpulsions à haute cadenceMode blockingHigh repetition rate pulses[PHYS.PHYS] Physics [physics]/Physics [physics]Mac-Zehnder interferometer[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct

Laser heating and ablation at high repetition rate in thermal confinement regime

2006

International audience; Laser heating and ablation of materials with low absorption and thermal conductivity (paint and cement) were under experimental and theoretical investigations. The experiments were made with a high repetition rate Q-switched Nd:YAG laser (10 kHz, 90 ns pulse duration and l = 532 nm). High repetition rate laser heating resulted in pulse per pulse heat accumulation. A theoretical model of laser heating was developed and demonstrated a good agreement between the experimental temperatures measured with the infrared pyrometer and the calculated ones. With the fixed wavelength and laser pulse duration, the ablation threshold fluence of paint was found to depend on the repe…

Materials sciencePACS: 81.65 Cf; 42.62 Cf; 61.82 Msmedicine.medical_treatmentGeneral Physics and Astronomy02 engineering and technology01 natural sciencesFluenceModellinglaw.invention010309 opticsThermal conductivityOpticslaw0103 physical sciencesmedicinePyrometerLaser ablationLaser heatingbusiness.industryPulse durationHigh repetition rateSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAblationLaserLaser ablationSurfaces Coatings and FilmsHeat capacity rateThermal confinement regime0210 nano-technologybusinessApplied Surface Science
researchProduct